The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 122

Showing per page

(Homogeneous) markovian bridges

Vincent Vigon (2011)

Annales de l'I.H.P. Probabilités et statistiques

(Homogeneous) Markov bridges are (time homogeneous) Markov chains which begin at a given point and end at a given point. The price to pay for preserving the homogeneity is to work with processes with a random life-span. Bridges are studied both for themselves and for their use in describing the transformations of Markov chains: restriction on a random interval, time reversal, time change, various conditionings comprising the confinement in some part of the state space. These bridges lead us to look...

⊗-product of Markov matrices.

J. P. Lampreia, A. Rica da Silva, J. Sousa Ramos (1988)

Stochastica

In this paper we introduce a ⊗-operation over Markov transition matrices, in the context of subshift of finite type, reproducing symbolic properties of the iterates of the critical point on a one-parameter family of unimodal maps. To the *-product between kneading sequences we associate a ⊗-product between the corresponding Markov matrices.

α-time fractional brownian motion: PDE connections and local times

Erkan Nane, Dongsheng Wu, Yimin Xiao (2012)

ESAIM: Probability and Statistics

For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z =  {Z(t) = W(Y(t)), t ≥ 0}  obtained by taking a fractional Brownian motion  {W(t), t ∈ ℝ} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise...

α-time fractional Brownian motion: PDE connections and local times∗

Erkan Nane, Dongsheng Wu, Yimin Xiao (2012)

ESAIM: Probability and Statistics

For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z =  {Z(t) = W(Y(t)), t ≥ 0}  obtained by taking a fractional Brownian motion  {W(t), t ∈ ℝ} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential...

Currently displaying 1 – 20 of 122

Page 1 Next